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a b s t r a c t 

Working memory is critical to higher-order executive processes and declines throughout the adult lifespan. How- 

ever, our understanding of the neural mechanisms underlying this decline is limited. Recent work suggests that 

functional connectivity between frontal control and posterior visual regions may be critical, but examinations of 

age differences therein have been limited to a small set of brain regions and extreme group designs (i.e., com- 

paring young and older adults). In this study, we build on previous research by using a lifespan cohort and a 

whole-brain approach to investigate working memory load-modulated functional connectivity in relation to age 

and performance. The article reports on analysis of the Cambridge center for Ageing and Neuroscience (Cam-CAN) 

data. Participants from a population-based lifespan cohort ( N = 101, age 23–86) performed a visual short-term 

memory task during functional magnetic resonance imaging. Visual short-term memory was measured with a 

delayed recall task for visual motion with three different loads. Whole-brain load-modulated functional connec- 

tivity was estimated using psychophysiological interactions in a hundred regions of interest, sorted into seven 

networks (Schaefer et al., 2018, Yeo et al., 2011). Results showed that load-modulated functional connectivity 

was strongest within the dorsal attention and visual networks during encoding and maintenance. With increasing 

age, load-modulated functional connectivity strength decreased throughout the cortex. Whole-brain analyses for 

the relation between connectivity and behavior were non-significant. Our results give additional support to the 

sensory recruitment model of working memory. We also demonstrate the widespread negative impact of age on 

the modulation of functional connectivity by working memory load. Older adults might already be close to ceiling 

in terms of their neural resources at the lowest load and therefore less able to further increase connectivity with 

increasing task demands. 
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. Introduction 

Visual short-term memory (VSTM), or the capacity to temporarily

etain a limited amount of visual information ( Logie, 1989 ), is critical

n our interactions with our environment and supports higher-order ex-

cutive processes. Unfortunately, VSTM declines throughout the adult

ifespan ( Brockmole and Logie, 2013 ). Given the importance of VSTM

n everyday functioning, a thorough understanding of the relation be-

ween VSTM and age is essential. A large number of studies have shown

ifferential patterns of regional brain activation by memory load related
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o age, mainly expressed by greater activation in older adults, that can

e interpreted by several accounts including the compensation-related

tilization of neural circuits hypothesis (CRUNCH; Reuter-Lorenz and

appell, 2008 ; but see Jamadar, 2020 , for a conflicting finding and

 systematic review). Regional activation studies typically report in-

reased activity in the frontoparietal, dorsal attention, and salience

etworks and decreased activity in the default mode network in re-

ponse to increased working memory load (e.g., Rottschy et al., 2012 ,

uo et al., 2019 ). Modulation of activation by load is related to per-

ormance and is weakened with increasing age ( Cappell et al., 2010 ;
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einzel et al., 2017 ; Kaup et al., 2014 ; Kennedy et al., 2017 ). While there

s no doubt that frontoparietal regions are critical for VSTM, studies us-

ng multivoxel pattern analysis (MVPA) show that the contents of VSTM

an be decoded from the visual cortex (e.g., Olmos-Solis et al., 2021 ) and

hat there is a decrease in classification performance as a function of load

elated to individual task performance ( Emrich et al., 2013 ). Thus, it has

een suggested that working memory maintenance arises from interac-

ions between frontoparietal control regions and perceptual processing

egions, where representations are maintained (e.g., Olmos-Solis et al.,

021 ; for an overview on this account see for example Eriksson et al.,

015 ; for a lifespan perspective see review Sander et al., 2012 ). Syn-

hronization of activity in distributed networks is critical for working

emory ( D’Esposito and Postle, 2015 ) and recent developments in con-

ectivity methods have led to a shift in focus from relating working

emory processes to local brain responses to interactions in widespread

etworks ( Soreq et al., 2019 ). However, the effect of age on functional

onnectivity related to working memory is still understudied. The cur-

ent study contributes to our understanding of age differences in work-

ng memory by using a large lifespan cohort, a continuous response task

ith different working memory loads, and a task-based, whole brain,

unctional connectivity approach. 

Load-modulated functional connectivity refers to the connectivity

trength (positive or negative) between regions of interest for the con-

rast of high versus low load. In young adults, VSTM load has been as-

ociated with within-network connectivity in the frontoparietal, dorsal

ttention, ventral attention, and visual networks ( Eryilmaz et al., 2020 ;

iang et al., 2016 ; Soreq et al., 2019 ; Zuo et al., 2019 ), and between-

etwork coupling among frontoparietal, dorsal attention, ventral atten-

ion and default mode networks ( Eryilmaz et al., 2020 ; Liang et al.,

016 ). Furthermore, due to its role in sustaining attention, interactions

etween the dorsal attention network and other networks, is thought to

e critical to memory performance at higher cognitive loads ( Zuo et al.,

019 ). 

A limited number of studies with mixed results have investigated the

ffects of age on working memory load-modulated functional connectiv-

ty. Pongpipat et al. (2021) showed that functional connectivity within

rontoparietal and default mode regions was strengthened as working

emory load increased. With increasing load, the negative connectivity

etween the frontoparietal and default mode network also increased.

rucially, this pattern was invariant across the lifespan, but better per-

ormance only related to stronger negative coupling between these net-

orks in middle-aged and older adults, not in younger adults or the

ldest old. The youngest adults performed well, and the oldest adults

oorly, regardless of connectivity between frontoparietal and default

ode regions. The authors suggested that for adults in the middle and

lder age range, brain maintenance or compensation strategies are most

mportant. In contrast, Heinzel et al. (2017) and Nagel et al. (2011) both

howed reduced working memory load-dependent modulation of con-

ectivity between the dorsolateral prefrontal cortex and other regions

n older adults. Increasing this connectivity with increasing load was

elated to higher performance in younger and older adults. A limita-

ion of these studies is that they only included a very limited subset

f brain regions or seeds. Some studies have used whole-brain acti-

ation results to define a working memory network for their connec-

ivity analysis. For instance, Burianova et al. (2015) reported modula-

ion of connectivity by memory load in the working memory network

n younger adults but not in older adults. Crowell et al. (2020) in-

estigated network integration, defined as the ratio of connectivity

ithin the task network versus between the task network and all

ther regions. While younger adults increased within-network con-

ectivity with increasing load in the task network, older adults re-

ruited a more distributed cortical network. This is in line with pre-

ious findings of reduced within-network specificity in older adults

 Bethlehem et al., 2020 ; Chan et al., 2014 ; Geerligs et al., 2015 ) and

he concept of age-related neural dedifferentiation (for a review, see

oen and Rugg, 2019 ). 
3  

2 
Although these recent findings give some insight on how age affects

oad-modulated functional connectivity in a predefined working mem-

ry network, a comprehensive investigation of the relationship between

hole-brain connectivity in relation to VSTM load across the lifespan is

issing. A whole-brain approach may be particularly critical, as a re-

ent study showed that task-modulated connectivity not only involves

ask-active regions but also regions that are not activated or deactivated

y the task ( Di and Biswal, 2019 ). Furthermore, regions that are coac-

ivated during a task do not necessarily have higher connectivity dur-

ng task than rest, indicating that both regions might be involved in

he task but work independently of one another ( Di and Biswal, 2019 ).

rowell et al. (2020) showed age-related differences in working mem-

ry load-related connectivity. Older adults demonstrated higher connec-

ivity between the task-related network and other areas. These effects

ight be missed when preselecting regions of interest. Additionally, se-

ecting regions of interest based on activation is suboptimal as peak ac-

ivation studies typically report overactivation in older adults, making

t difficult to select a shared set of regions across age groups ( Reuter-

orenz and Cappell, 2008 ). A second limitation of previous studies is

hat most use an extreme group design (i.e., comparing young and older

dults). Thus, in the present study we address these issues by using a

hole-brain approach to characterize age-related differences in load-

odulated functional connectivity in a large, adult lifespan cohort. 

Participants from the population-based Cambridge center for Age-

ng and Neuroscience (Cam-CAN) lifespan cohort ( N = 111, age 23–

6) performed a visual short-term memory (VSTM) task during func-

ional magnetic resonance imaging (fMRI). VSTM was measured with

 delayed recall task for visual motion with three different loads. Re-

all precision has been found a highly sensitive measure to investigate

orking memory and has been used in clinical and healthy aging pop-

lations (e.g., Lugtmeijer et al., 2021 ; Mitchell et al., 2018 ; Tas et al.,

020 ; Zokaei et al., 2015 ). Using a delayed recall task, as opposed to

he commonly used n-back task, allowed us to compare task-related in-

eractions during both encoding and maintenance periods. A previous

tudy using a similar task design reported differences in brain activity

uring stimulus presentation and maintenance in relation to working

emory load, with visual regions showing an effect of load during en-

oding and frontoparietal regions during maintenance ( Emrich et al.,

013 ). These findings suggest that it is relevant to analyze the encod-

ng and maintenance periods separately. Whole-brain load-modulated

onnectivity was estimated using psychophysiological interactions in a

undred regions of interest, sorted into seven networks ( Friston et al.,

997 ; Schaefer et al., 2018 ; Yeo et al., 2011 ). We expected: 1) increased

oad to be associated with increased functional connectivity, particu-

arly in frontoparietal, attentional control and visual regions in line with

egional activation and decoding studies, 2) no effect of age on load-

odulated functional connectivity between the frontoparietal and de-

ault mode network (based on Pongpipat et al., 2021 ) and decreased

oad-modulated connectivity between frontal and parietal regions with

ncreasing age (based on Heinzel et al., 2017 ), and 3) better performance

o be associated with higher load-modulated functional connectivity in

etworks modulated by VSTM load (based on Heinzel et al. (2017) and

agel et al. (2011) ). These hypotheses only concern regions included

n previous studies. Using a whole brain approach we aim to deter-

ine whether load-modulated functional connectivity extends to other

egions across the cortex. 

. Materials and methods 

.1. Participants 

A population-based sample of 280 healthy adults participated in

tage 3 of the Cam-CAN project. Participants completed a series of

europsychological and neuroimaging experiments, of which the VSTM

MRI task is analyzed in this study. Half of the participants in Stage

 were assigned to the VSTM task, of which 125 completed it. Eight
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Table 1 

Demographics. 

Age group Younger Middle Older 

N 36 35 40 

Age range (years) 23–40 41–60 61–86 

Sex (male/female) 18/18 16/19 23/17 

Handedness (right/left) 33/3 35/0 38/2 

Highest education 

University 32 27 22 

A’ levels 1 5 11 

GCSE grade 3 3 3 

None > 16 0 0 4 

MMSE M ( SD ) 29.36 (1.02) 28.91 (1.48) 28.40 (1.34) 

Note. Sex based on self-report. Handedness = score on the Edinburgh Hand- 

edness Inventory ( Oldfield, 1971 ). MMSE = Mini Mental State Examination. 
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articipants were excluded based on poor performance on the lowest

emory load trials of the task (single item, mean absolute error > 30°),

wo had incomplete EPI data, and four failed preprocessing of fMRI

ata. The final sample consisted of 111 participants with an age range

f 23–86 years old (demographic information in Table 1 , only grouped

y age for illustrative purposes, not for analyses). MMSE scores ranged

rom 25 to 30. Eight participants had a missing MMSE score from

he Stage 3 testing phase. Thus, for those participants, we used their

MSE score from Stage 1 for the means reported in Table 1 (the mean

umber of days between Stages 1 and 3 for these participants was

98 days, range 279–1317 days). Ethical approval for the Cam-CAN

tudy was obtained from the Cambridgeshire 2 (now East of England

Cambridge Central) Research Ethics Committee. Participants gave

ritten, informed consent before participating. 

.2. Experimental design 

The stimuli and task were adapted from Emrich et al. (2013) . In

hort, VSTM was measured with a delayed recall task for visual motion

ith three different loads based on set size ( Fig. 1 ). Participants were

sked to fixate on a dot in the center of a screen during a 7 second

ntertrial interval. Then three patches of coherently moving dots were

resented sequentially, each in a different color. Patches were presented

or 500 ms with a 250 ms blank interval. Depending on the set size, one,

wo or three patches displayed dots moving in a linear direction. Par-

icipants had to remember the motion direction and the corresponding

olor. The remaining patches showed dots moving in a circular motion

t the same speed and could be ignored. During an 8 s blank interval,

articipants were to keep the motion direction(s) in mind. Finally, the

robe display consisted of a circle with a line pointing to a random
3 
oint on the circle, in one of the three colors that indicated which of

he motion directions needed to be reported. Participants indicated the

orresponding direction by rotating the line clockwise or counterclock-

ise by means of pressing keys on a button box. After confirmation of

he direction by pressing a third key, or after 5 s, the next trial began. 

The task consisted of 3 runs of 30 trials. Each run had 10 trials of

ach memory load (1, 2, and 3), counterbalanced with serial position

first, second, or third) and color (red, yellow, or blue). Trials within

ach run were presented in random order. On 27 trials per run, the

otion direction of the probed patch was one of the three directions

7, 127, or 247°). To prevent participants from noticing this pattern,

andom directions were used for the 3 remaining trials, as well as all the

nprobed patches throughout the task (i.e., that needed to be memorized

ut were not tested). 

.3. Behavioral analysis 

Response error, or the angular difference between the target value

nd the reported value, was used as a model-free measure of perfor-

ance. The effects of load, age, and their interaction was analyzed us-

ng mixed effects modeling, with subject as random effect, and as fixed

ffects load and age. Analyses were conducted in R (version 4.2.0) using

he lme4 package ( Bates et al., 2015 ). Four models were built hierarchi-

ally such that effects were added one by one to see if additional predic-

ors improved model fit (e.g., Sommet and Morselli, 2017 ). Predictors

ere added in the following order: subject, age, load, and age × load.

esponse error captures the mean absolute deviation from the target

nd was used instead of model estimates (such as precision; Zhang and

uck, 2008 ) because we found that model fit (log-likelihood) declined

ith age (Pearson correlation, set size 1 r (109) = − 0.36, p < .001, set

ize 2 r (109) < − 0.46, p < .001, set size 3 r (109) = − 0.53, p < .001). 

Nevertheless, for completeness, we also report the results from a

hree-component mixture model ( Zhang and Luck, 2008 , modified by

ays et al., 2009 ) that distinguishes between different types of errors.

his provides estimates of how many items (directions) were stored in

emory (K), the precision of each item held in memory (kappa), the pro-

ortion of non-target errors (reporting a direction that corresponded to

n unprobed patch), and the proportion of guess responses. The model

escribed responses by a probabilistic mixture of errors centered on the

arget feature, centered on one of the non-target features, or distributed

niformly (guesses). Errors centered on the target or non-target features

ere described by a Von-Mises distribution (a circular analogue of the

ormal distribution). Further, because there is a significant response

ias away from cardinal and towards oblique angles that increased with

ge, we subtracted the mean response bias per direction from each re-

ponse prior to running the mixture model. Finally, the correlation be-
Fig. 1. Example trial from the delayed-recall task. Partic- 

ipants were shown three patches of moving dots and were 

cued after a blank interval with a color of which the cor- 

responding direction of motion needed to be reported. 
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ween different performance measures and age was analyzed per set size.

utliers on the response error measure were identified with a boxplot,

ased on a value higher than 1.5 times the interquartile range above the

pper quartile ( Tukey, 1977 ). 

.4. MRI acquisition 

The MRI data were collected using a Siemens 3 T TIM TRIO sys-

em. During each of three functional runs while the participant was

erforming the task, T2 ∗ -weighted Echo Planar Images were acquired

sing the following parameters: Repetition time (TR) = 2 s, three echo

imes (TE = 12 ms, 25 ms and 38 ms), flip angle = 78°, 34 axial slices of

.9 mm thickness acquired in descending order with an inter-slice gap

f 20%, in plane field of view (FOV) = 224 mm × 224 mm, and voxel-

ize = 3.5 mm × 3.5 mm × 3.48 mm. There were a variable number

f scans per run, depending on reaction time, ranging from 294 to 349

median 320). 

A structural image was acquired for each participant, on a different

ay (median 49 days apart, range 75 to 1039). This used a T1-weighted

D Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence

ith the following parameters: TR = 2250 ms, TE = 2.98 ms, inversion

ime = 900 ms, 190 Hz per pixel, flip angle 9°, FOV = 256 × 240 ×
92 mm, and GRAPPA acceleration factor 2, voxel size 1 mm isotropic.

.5. MRI preprocessing 

Imaging data were preprocessed with the automatic anal-

sis (AA, release 3) batching system ( https://imaging.mrc-

bu.cam.ac.uk/imaging/AA ) using Statistical Parametric Mapping

oftware (SPM12 release 7771; Wellcome Trust center for Neuroimag-

ng, London, UK) and MATLAB (MATLAB version 9.10.0.1739362

R2021a). Natick, Massachusetts: The MathWorks Inc.). The structural

mages were rigid-body registered with an MNI template brain, bias

orrected, segmented, and warped to match a study-specific anatomical

emplate based on the whole CamCAN Stage 3 sample using the

ARTEL procedure ( Ashburner, 2007 ; Taylor et al., 2017 ), which

as subsequently normalized into MNI space. The functional images

ere then realigned, corrected for slice-time acquisition, rigid-body

oregistered to the structural image, transformed to MNI space using

he warps and affine transforms from the structural image, smoothed

8 mm FWHM Gaussian kernel), and resliced to 3 × 3 × 3 mm voxels. 

The first-level GLM for each participant comprised three neural com-

onents per trial: (1) encoding, modeled as an epoch of 2 s duration at

nset of the first moving dot pattern; (2) maintenance, modeled as an

poch of 8 s from the onset of the blank screen; and (3) probe, mod-

led as an epoch of the duration from the onset of the probe till re-

ponse. Each of these components were modeled separately for the three

emory load levels and convolved with the canonical hemodynamic re-

ponse function (HRF). Two block regressors were added to model the

hree different runs. 

.6. Head motion 

To assess whether there was an interaction between VSTM load and

ge on head motion, realignment parameters from the preprocessing

ere used to calculate framewise displacement per scan ( Power et al.,

012 , 2014 ). As a within-subject contrast (set size 3 > set size 1) is used

or the functional connectivity analyses, only an interaction between set

ize and age would be a confound for our results. Rotational displace-

ents were converted to millimeters to approximate displacement on

he surface. Next, the sum of the absolute values from all six realignment

arameters was calculated. This resulting time series for the framewise

isplacement was then multiplied by the normalized task regressor of

nterest (for set size 1 and 3 separately) to get the displacement per con-

ition based on the onset times corrected for the hemodynamic response

unction. The mean of these vectors represents the average framewise
4 
isplacement per condition during maintenance. Only the maintenance

eriod was included as the encoding phase only lasted for 2 s (with a TR

f 2 s) and only at the time of the presentation of the third stimulus is the

et size of that trial clear. The probe phase is not included in our analysis

f framewise displacement as none of our connectivity analyses included

he probe phase and we wanted to avoid the confound of motion from

iving a response. Mixed effects modeling (lme4 package in Rstudio)

as used to analyze the effects of load, age, and their interaction on

ead motion. Subject was the random effect in the model, load and age

ere fixed effects. Head motion appears to be especially problematic in

esting state designs, compared to task-based designs ( Huijbers et al.,

017 ). Nevertheless, subjects with head motion greater than 2SD above

he group mean were excluded from the functional connectivity analy-

es. 

.7. Correlational PPI 

Whole-brain functional connectivity matrices were estimated for the

ontrast set size 3 > set size 1, for each subject by using a correlational

sychophysiological interaction (cPPI) approach as implemented by the

PPI toolbox ( Fornito et al., 2012 ; Friston et al., 1997 ). Since we had

o a priori predictions about directionality we used cPPI which is based

n partial correlations between ROIs to isolate task-related changes in

unctional coupling between regions, resulting in symmetrical connec-

ivity matrices. This avoids the arbitrary distinction between seed and

arget as is required in traditional PPI ( Wang et al., 2018 ). The cPPI

ethod has recently been used in other studies to examine effects of set

ize ( Davis et al., 2018 ; Crowell et al., 2020 ). We obtained connectivity

erms for 100 ROIs corresponding to the cortical Schaefer parcellation

 Schaefer et al., 2018 ; in line with Heffernan et al., 2021 ; Pervaiz et al.,

020 ; Rieck et al., 2021 ). The ROIs were sorted into seven networks

rom Yeo et al. (2011) : visual, somatomotor, dorsal attention, ventral

ttention, limbic, frontoparietal, and default mode. As the “limbic net-

ork ” only consisted of the orbitofrontal cortex and temporal pole, we

sed the term OFC-TP to refer to this network for the sake of clarity.

ithin- and between-network connectivity was defined based on these

etworks. The PPI terms were obtained by modeling the task effects,

he physiological signal, and their interaction following the manual of

he cPPI toolbox ( Fornito et al., 2012 ). For each participant, average

ime series over all voxels were extracted from each ROI based on the

rst-level GLM design matrix using an F-contrast that included all task

egressors for the effect of interest and no threshold (following the steps

f the SPM12 manual). In the cPPI toolbox, for each pair of ROIs, the

RF was deconvolved from the time courses of both ROIs using the same

ode as implemented in SPM (in spm_peb_ppi.m). Deconvolution is rec-

mmended as interactions between task and brain signals occur at the

eural level rather than in the hemodynamic response ( Gitelman et al.,

003 ). Both deconvolved time courses were multiplied by the uncon-

olved task regressor for the contrast of interest (set size 3 > set size 1)

o generate the deconvolved PPI terms. Note that the contrast of interest

s set size 3 > set size 1 (in line with Nagel et al., 2011 ); this is not a com-

arison to an implicit baseline. The PPI terms were reconvolved with the

RF. Finally, the partial correlation between these two PPI terms was

omputed adjusting for: the raw time courses of the two ROIs, all task

egressors (encoding, maintenance, and probe for set sizes 1, 2, and 3)

xcept for those creating the contrast of interest, the time-courses of the

emaining ROIs, and nuisance signals. Thirty-two nuisance regressors

ere added, representing six motion parameters estimated in the re-

lignment stage, time-series from white matter tissue and cerebrospinal

uid (CSF), their derivatives, plus quadratic functions of those 16 pa-

ameters. Masks for white matter and CSF were based on the FieldMap

oolbox in SMP12 (probability maps were thresholded at 0.8 and 0.5 re-

pectively, based on visual inspection for no overlap with the Schaefer

ortical atlas). This was done for all ROI pairs, resulting in a 100 × 100

ymmetrical partial correlation matrix for each subject for encoding and

aintenance separately. The resulting matrices express load-modulated

https://imaging.mrc-cbu.cam.ac.uk/imaging/AA
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unctional connectivity strength for the contrast set size 3 > set size 1, in

his manuscript referred to as an increase (or decrease) in connectivity

trength with increasing load. 

.8. Group-level analysis 

Group-level analysis on the cPPI matrices were conducted using the

etwork Based Statistics (NBS) toolbox ( Zalesky et al., 2010 ). We first

an, for the partial connectivity between each pair of ROIs, a one-sample

 -test for the effect of task load for the contrast set size 3 > set size 1, with

 threshold of t = 0.5 (this value is based on partial correlations in the

onnectivity matrix) to identify which ROI pairs showed a medium to

arge effect of memory load. Subsequently, per ROI pair, we ran three

LMs, in a stepwise manner, to assess the relationship between age,

erformance, and the age-by-performance interaction and brain-wide

oad-modulated connectivity ( Capogna et al., 2022 ). For performance

e used response error from set size 3 (in line with Nagel et al., 2011 ),

s using the difference score between set sizes 3 and 1 would be noisier

nd performance at set size 3 is most sensitive to individual differences.

s supplementary analysis (S3) we included the results based on the

ifference score. Performance and age were mean-centered before cal-

ulating the interaction term. In the first model we tested the effect of

ge on the load-dependent changes in connectivity (cPPI ∼ age). In the

econd model we added performance as a regressor to test the effect

f performance on modulation of connectivity by load, while control-

ing for age (cPPI ∼ age + performance). The third model tested for the

nteraction between age and performance (cPPI ∼ age ∗ performance).

he GLM models are based on a design matrix that contains regressors

or age, performance, and age × performance, and a contrast vector for

he statistical test (separate for a positive and negative effect). As effect

izes of associations between neural measures and cognition are small

 Marek et al., 2022 ) and our whole-brain approach necessitated cor-

ection for many tests, we added an exploratory analysis by repeating

he analyses of the second and third model restricted to network pairs

here load-modulated functional connectivity was strongest in either

he encoding or maintenance connectivity matrix. 

Both the one-sample t -test and the three GLM models were controlled

or the family-wise error rate (FWE) using the NBS toolbox. The first step

n NBS is mass univariate testing at every connection in the connectiv-

ty matrix. In the second step, connections with a value exceeding a

hreshold are selected. For the one-sample t -test of the main effect of

oad, the threshold is t = 0.5, which corresponds to a medium to large

ffect, for the GLMs testing the effect of age, performance, and their

nteraction, the threshold is t = 2.365 (corresponding to a p-value of

.01 with a DF of 100). The third step is to identify topological clusters

mong the connections that exceeded the threshold. In the final step,

n FWE-corrected p-value is computed based on 5000 permutations

 Freedman and Lane, 1983 ). For each permutation the first three steps

re repeated. Graph component significance is at p < .025 (2 compar-

sons, positive and negative contrast). Results are reported as the num-

er of significant edges. NBS has been found to offer more power than

DR correction for identifying distributed networks of edges ( Fornito

t al., 2013 ) and has been used to identify functional networks associ-

ted with memory performance and age before ( Capogna et al., 2022 ).

rainNet Viewer was used for visualization of networks on a 3D-brain

 Xia et al., 2013 , http://www.nitrc.org/projects/bnv/ ). 

. Results 

.1. Behavioral results 

Using mixed linear models, we analyzed the effects of age and VSTM

oad on response error. The first model contained only subject as random

ffect and confirmed that accuracy across memory loads was correlated

ithin individuals (ICC = 0.40). Adding age to the model improved the

odel fit ( 𝜒2(1) = 28.53, p < .001), as did load ( 𝜒2(1) = 173.14, p < .001),
5 
nd the age × load interaction ( 𝜒2(1) = 41.58, p < .001). Pairwise con-

rasts showed that response error on set size 1 was different from that

f set size 2 and set size 3, and there was a difference between set size

 and set size 3 ( p < .001, Fig. 2 A). The positive correlation between

ge and response error is significant at all loads ( Table 2 ), but as can be

een in Fig. 2 B, the effect of age was more pronounced at higher loads.

s the boxplot identified one outlier on response error at set size 3 (i.e.,

ur outcome measure of interest for fMRI analyses), we reran all analy-

es excluding this subject (age 54, female). This did not lead to different

esults. 

To evaluate the contribution of different sources of error, we ap-

lied a three-component mixture model ( Bays et al., 2009 ). Most of

hese measures correlated significantly with age ( Table 2 , Fig. 2 C-F),

xcept for estimated item capacity at set size 1, guess rate at set size 1

nd 2, and proportion of non-target errors at set size 2 (adjusted alpha

.05 / 14 = 0.0036; note that non-target errors are not possible for set

ize 1). A decrease in precision, and an increase in guess rate and non-

arget errors, all contribute to a higher response error with increasing

ge at a high memory load. However, as already mentioned, increasing

ge was associated with a lower model fit at all three loads and thus, we

ecided to use raw response error in relating performance to functional

onnectivity. 

.2. Head motion 

Using mixed linear models, we analyzed the effects of age and VSTM

oad on head motion to make sure that our functional connectivity re-

ults are not confounded by differences in head motion. The first model

ontained age as fixed effect and showed that adding age to a model with

nly subjects (random effect) improved the model fit ( 𝜒2(1) = 36.35, p <

001). In the second model load was added, but this did not improve the

odel fit ( 𝜒2(1) = 1.58, p > .05), and neither did adding the age × load

nteraction in the third model ( 𝜒2(1) = 2.58, p > .05). Head motion was

omparable for the different conditions and there was no interaction ef-

ect, so it is unlikely that the observed age difference in load-modulated

onnectivity is the result of differential head motion across conditions

ith age. With increasing age, head motion increased (tested continu-

usly, but to illustrate, mean framewise displacement was 0.21, 0.26,

nd 0.45, for young, middle, and old adults respectively, based on the

ge groups of Table 1 ). Therefore, we excluded ten subjects based on

ean framewise displacement of higher than 2SD above the mean of

he total sample (resulting in a mean framewise displacement per group

f 0.21, 0.26, and 0.32, respectively). All further analyses report on a

nal sample of 101 subjects. Exclusion of these 10 subjects did not affect

ny of the results below. 

.3. Whole-brain functional connectivity 

Calculating whole-brain load-modulated functional connectivity for

he contrast of load (set size 3 > set size 1), we assessed the effect of

emory load, and how this modulation by load is associated with age,

erformance, and their interaction. Results in the main manuscript are

ased on the 100-region-parcellation. To examine the impact of differ-

nt levels of coarseness of brain atlases on functional connectivity es-

imates we additionally report results for the Schaefer 200- and 400-

egion-parcellations, which largely yielded a similar pattern of results

see supplementary materials, S4). 

.3.1. Main effect of load 

Load-modulated functional connectivity strengthened with in-

reased positive connections at higher load both within and between

etworks ( Fig. 3 A and D). An NBS-based one-sample t -test with a thresh-

ld of r > 0.5 was applied to identify edges that showed a medium to

arge effect of load (FWE-corrected, number of significant edges for en-

oding = 500, and maintenance = 724, Fig. 3 B and E). The strongest

http://www.nitrc.org/projects/bnv/
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Fig. 2. Effects of memory load and age on VSTM performance. A) response error shown as boxplot per load with age on a color scale from young in blue to old in 

red. In panels B to F, the linear regression line for the effect of age is shown per set size, along with its 95% confidence interval, for the B) response error, C) precision 

(kappa), D) item capacity (K), E) estimated guess rate, and F) estimated rate of non-target errors. 

Table 2 

Correlations between VSTM performance measures and age per memory load. 

Measure Load 1 ( r, p ) Load 2 ( r, p ) Load 3 ( r, p ) 

Response error .30 .001 .41 < 0.001 .52 < 0.001 

Precision (kappa) − 0.38 < 0.001 − 0.38 < 0.001 − 0.30 .002 

Item capacity (K) − 0.06 .537 − 0.35 < 0.001 − 0.51 < 0.001 

Proportion of guesses (pG) .06 .537 .23 .016 .34 < 0.001 

Proportion of non-target errors (pNT) - 0.27 .004 .28 .003 

Model fit (LL) − 0.3 < 0.001 − 0.46 < 0.001 − 0.53 < 0.001 

Note: significant results in bold. 

Fig. 3. Partial correlation coefficient matrices for mean encoding (A and B) and maintenance (D and E) connectivity for the contrast set size 3 > set size 1. ROIs are 

sorted into seven networks from Yeo et al. (2011) : visual (Vis), somatomotor (SomMot), dorsal attention (DAN), ventral attention (VAN), orbitofrontal-temporal pole 

(OFC-TP), frontoparietal (FP), and default mode (DMN). Red colors indicate a positive partial correlation, while blue colors indicate a negative partial correlation. 

Panels A and D show the unthresholded matrices. Panels B and E show the results of a one-sample t -test for a medium to large effect size (thresholded r > 0.5, 

FWE-corrected p < .025). Panels C and F show the proportion of edges that survive thresholding per network cell, with green indicating a higher proportion. 

6 
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Fig. 4. Correlation matrices for encoding (A and B) and maintenance (D and E) for the correlation between age and load-modulated connectivity strength. Red colors 

indicate a positive correlation, while blue colors indicate a negative correlation. Panels A and D show the unthresholded matrices. Panels B and E show only edges 

where the effect of age is significant based on an NBS based t -test (FWE-corrected, p < .025). Panels C and F show the proportion of edges that show a significant 

effect of age per network cell, with green indicating a higher proportion. 
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ithin-network connectivity was in the dorsal attention network fol-

owed by the visual network, and to a lesser extent the somatomotor,

entral attention, and frontoparietal networks (see Fig. 3 C and F, which

how the proportion of edges that survive thresholding per network).

etween-network connectivity increased primarily between the somato-

otor, dorsal attention, and ventral attention networks, and between

he dorsal attention and the frontoparietal networks. The pattern of high

ositive correlations for the contrast of set size 3 > set size 1, was highly

omparable for encoding and maintenance. 1 

.3.2. Effect of age 

With increasing age, there was a significant decrease in load-

odulated connectivity (weakening of positive correlations with in-

reasing task load) for the contrast of high versus low memory load

hroughout the brain. Fig. 4 A and D show the correlation between age

nd load-modulated connectivity for each ROI pair (number of signifi-

ant edges based on NBS for encoding = 1871 and maintenance = 1849,

ig. 4 B and E). Age-related declines were most pronounced within the

omatomotor, frontoparietal, and default mode networks, and between

he visual network and the ventral attention and frontoparietal net-

orks ( Figs. 4 C and 4 F show the proportion of significant edges per

etwork pair). During encoding there was additionally a pronounced

ecline in load-modulated functional connectivity strength with age be-

ween the frontoparietal and visual and default mode networks. Dur-
1 The effect of load may seem stronger during the maintenance period com- 

ared to the encoding period. This may be partly due to the difference in du- 

ation between encoding and maintenance (2 versus 8 s, respectively, see sup- 

lementary materials S1., Figures S1.1 and 1.2). The pattern of load-modulated 

onnectivity is highly similar to that of encoding in the last two seconds of the 

aintenance interval suggesting that it is not just spillover effects. Furthermore, 

hen analyzing the encoding and maintenance phases together, the overall con- 

ectivity pattern remains the same, with the number of significant edges (585 for 

he combined analysis) in between that of encoding and maintenance separately 

500 and 724, respectively, Figure S1.3). This suggests that the stronger load- 

odulated connectivity during maintenance is not purely an artefact caused by 

he difference in timing. 
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7 
ng maintenance the decline in load-modulated functional connectivity

as more pronounced within the dorsal and ventral attention network,

nd between the visual network and the somatomotor and ventral at-

ention networks, and the dorsal attention and frontoparietal networks.

here were no significant positive effects of age (graph component FWE-

orrected p = .23 and p = .22 for encoding and maintenance respec-

ively); that is, no connections showed a load-dependent increase in con-

ectivity that was stronger in older compared to younger adults. Older

dults do still show positive load-modulated functional connectivity but

o a lesser extent compared to younger adults, as illustrated in Fig. 5

or average within-network connectivity by age group (young: 20–40;

iddle: 41–60; old: older than 60 years). 

.3.3. Effect of performance 

Running the model (predicting connectivity from performance, con-

rolling for age) on the full matrices for encoding and maintenance

id not result in any effects of performance that survived correc-

ion (see supplementary materials S2.1 for whole brain unthresholded

nd non-significant thresholded results). We ran an exploratory analy-

is restricted to the two networks where load-modulated connectivity

trength was highest, the visual and dorsal attention networks ( Fig. 3 C

nd F). Unthresholded results of these two networks showed positive

nd negative associations between performance and connectivity within

he visual network, and negative associations in the dorsal attention net-

ork ( Fig. 6 A and D). After NBS thresholding, lower response error (i.e.,

etter performance) was associated with an increase in load-modulated

onnectivity strength within the dorsal attention network, controlling

or the effect of age (number of significant edges for encoding = 22,

nd maintenance = 32, Fig. 6 B and E; scatterplot of the relationship

etween average load-modulated connectivity in the dorsal attention

etwork and performance controlled for age in supplementary materi-

ls S2, Figure S2.2). The effect was more left lateralized during encoding

ompared to during the maintenance phase ( Fig. 6 C and F). Using the

ifference score of response error (set size 3 - set size 1) resulted in a

imilar pattern of connectivity strength in the unthresholded results. In

his analysis, none of the edges survived FWE correction (supplementary

aterials S3). 
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Fig. 5. Average load-modulated connectivity strength (partial correlation coefficient) within each network per age group. Participants are split into young (20–40 

years old), middle (41–60 years old), and older (60 + ) adults for illustrative purposes. Left during encoding (A), right during maintenance (B). The lower and upper 

ends of the colored boxes correspond to the first and third quartiles with the black line indicating the median. The error bars are set at 1.5 × the inter-quartile range. 

Data points that exceed this value are indicated by the black dots. 

Fig. 6. Results of an exploratory analyses of the effect of performance in restricted networks. Correlation matrices for encoding (A and B) and maintenance (D and 

E) for the correlation between performance (response error at set size 3) and load-modulated connectivity strength in the visual and dorsal attention networks. Red 

colors indicate a positive correlation, while blue colors indicate a negative correlation. Panels A and D show the unthresholded matrices. Panels B and E show only 

edges where the effect of performance is significant based on an NBS based t -test (FWE-corrected, p < .025). Panels C and F show the significant edges overlaid to a 

3D-brain. 
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.3.4. Interaction effect of age × performance 

Last, we tested the interaction effect of age × performance over all

dges and restricted to the visual and dorsal attention networks. This

ielded no significant results. 

. Discussion 

In this study, we found that load-modulated connectivity strength in-

reased in response to VSTM load, especially within the dorsal attention

nd visual networks. Age was associated with reduced load-modulated

onnectivity strength across the cortex, especially within the frontopari-

tal and somatomotor networks. Finally, while there were no significant

ssociations between performance and load-modulated connectivity at

he whole-brain level, exploratory analyses within the networks most

ensitive to task load suggested that better performance may be related
8 
o load-modulated connectivity in the dorsal attention network, in an

ge-invariant way. As we discuss below, our results provide additional

upport to the sensory recruitment model of working memory and lend

urther support to the CRUNCH hypothesis of neurocognitive aging. 

.1. VSTM load-modulated functional connectivity 

Load-modulated functional connectivity effects were most pro-

ounced within the dorsal attention and visual networks, both dur-

ng encoding and maintenance. According to the sensory recruitment

ccount of working memory (e.g., D’Esposito and Postle, 2015 ), the

ame cortical regions involved in perceptual processing are recruited

or maintenance during working memory. Compelling evidence for this

ccount derives from studies using MVPA that show that the visual cor-

ex supports representations of visual features during the delay period,
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espite mean activity in the visual cortex dropping to baseline levels

uring that same period (reviewed in D’Esposito and Postle, 2015 ; and

n Teng and Postle, 2021 ; Emrich et al., 2013 ). In contrast, the intra-

arietal sulcus shows load-dependent delay-period activity, but working

emory content cannot be readily decoded from this region at higher

oads ( Emrich et al., 2013 ). Based on delay-period activity and MVPA

tudies, the parietal cortex has been associated with attentional con-

rol needed for context-binding, prioritization of items, and resistance

o distraction (e.g., Gosseries et al., 2018 ; Teng and Postle, 2021 ). Our

esults contribute to this literature by showing that functional connec-

ivity in both the visual and dorsal attention networks is modulated by

orking memory load during both encoding and maintenance (see also

oreq et al., 2019 , for similar findings with young adults). It is important

o note that an increase in load-modulated connectivity strength within

he visual network cannot be easily explained by more visual input, as

he amount of visual input and average motion per item was matched

t all three set sizes. 

Another key network in the sensory recruitment framework is the

rontoparietal network which has been associated with top-down con-

rol and abstract representations ( Scimeca et al., 2018 ). Activation stud-

es have shown increased activity in frontoparietal regions related to

orking memory load (e.g., Manoach et al., 1997 ; Rottschy et al.,

012 ; Zuo et al., 2019 ). In contrast, functional connectivity studies

eport mixed results, some reporting increased connectivity within

he frontoparietal network with increasing load ( Liang et al., 2016 ;

ongpipat et al., 2021 ), while others report an increase relative to base-

ine but no additional modulation by load ( Soreq et al., 2019 ; Zuo et al.,

019 ). Most of these studies used variations of the n-back task, while

he current paradigm manipulated the number of directions being held

n mind, and we found only moderate load-modulated connectivity

trength within the frontoparietal network for the contrast of set size 3

 set size 1. Functional connectivity within the frontoparietal network

ay reflect the need for top-down control, which likely differs more

oving from baseline to task than it does moving from lower to higher

oads. This is an important question for future research. 

Strikingly, we found pronounced load-modulated connectivity

ithin the somatomotor network. Changes in connectivity specifically

ithin the supplementary motor area have been associated with work-

ng memory load effects ( Nagel et al., 2011 ; Steffener et al., 2012 ). In

ontrast, Eryilmaz et al. (2020) examined connectivity during a Stern-

erg short-term memory task with letters, but did not observe a load ef-

ect within the somatomotor network. Load-modulation in the somato-

otor network might be related to the spatial aspect of the task used

ere. Participants likely maintained a spatial representation of each mo-

ion direction in order to respond correctly. Other work also suggests a

ink between working memory and motor planning; for instance, loca-

ions held in working memory can affect eye movements (Theeuwes

t al., 2015). Connectivity within the somatomotor network has been

ssociated with prospective motor coding during a spatial delayed re-

all task ( Purg et al., 2022 ), with greater connectivity seen when there

s a predictable relation between the motor response and the location

f the memorized target (motor response from center to target > mo-

or response from random location to target). Prospective motor coding

an be used to execute a spatial response but also to support rehearsal

nd evaluate a memory probe ( Postle, 2006 ). To stress the coupling be-

ween sensory maintenance and motor intention, D’Esposito and Pos-

le (2015) argue for the use of the label “sensorimotor recruitment ” in-

tead of the more common label “sensory recruitment ” models. 

In addition to these within network changes, we also observed sev-

ral between network changes, including between the dorsal attention,

entral attention, and somatomotor networks, and between the dorsal

ttention and frontoparietal networks. The functions of these networks

nclude visuospatial attention, processing salience, somatosensory and

otor processing, and working memory and inhibition (respectively; re-

iewed in Uddin et al., 2019 ). Higher working memory load plausibly re-

ults in stronger connectivity between these networks as more top-down
9 
ontrol is required. Interestingly, load-modulated connectivity strength

etween the visual and dorsal attention networks was limited (in line

ith Eryilmaz et al., 2020 ). It might be that functional connectivity be-

ween these networks is consistent across different memory loads. A sec-

nd possible explanation is that between-network connectivity is only

odulated by load during the response phase when a comparison is

ade between the memorized items to select a response ( Xu, 2017 ). 

The main discrepancy between our results and previous studies is the

imited effect of working memory load on default mode network connec-

ivity ( Eryilmaz et al., 2020 ; Liang et al., 2016 ; Pongpipat et al., 2021 ).

ongpipat et al. (2021) reported an increase in negative connectivity be-

ween the frontoparietal and default mode network as load increased.

his effect was stronger when comparing task with a control condition

han for the linear effect of load. Further, a study by Zuo et al. (2019) ,

howed that while the default mode network was strongly associated

ith performing an N-back, this was to a similar extent in the contrasts

f baseline vs 0-back, and 0-back vs 2-back. Possibly our lowest load

ondition (which required remembering a single direction while ignor-

ng rotating dots in two other colors) was more demanding than that of

ther studies using, for example, a 0-back task. It might be that func-

ional connectivity of the default network (much like the frontoparietal

etwork) is mainly modulated by the presence or absence of a task. 

.2. Age effects on load-modulated functional connectivity 

Older age in our study was related to greater response error, which at

he highest load, the mixture model suggests was due to lower precision,

ower item capacity, and a higher rate of non-target errors and guess

esponses. Lower precision and item capacity suggests an age-related

ecline in the ability to maintain multiple high-resolution representa-

ions, while a higher rate of non-target errors and guesses might relate

o a decline in inhibition and attentional control. 

We found negative effects of age on the modulation of functional

onnectivity by load in widespread networks throughout the cortex ex-

ept for the orbitofrontal and temporal pole ROIs. Older adults showed

ess increase in load-modulated connectivity strength as task demands

ncreased, as has been reported in activation studies ( Cappell et al.,

010 ; Heinzel et al., 2017 ; Kaup et al., 2014 ; Kennedy et al., 2017 ). Re-

uced connectivity with age in the default mode network is a consistent

nding in the literature across both task-based and resting state studies

 Andrews-Hanna et al., 2007 ; Bethlehem et al., 2020 ; Damoiseaux et al.,

008 ; Geerligs et al., 2012 , 2015 ; Grady et al., 2010 ; Sambataro et al.,

010 ; Samu et al., 2017 ; Tsvetanov et al., 2016 ), one that we repli-

ate here. Our study additionally shows a novel finding of decreased

oad-modulated connectivity with increasing age within the somato-

otor, dorsal attention, ventral attention, and frontoparietal networks,

nd between the visual network and other networks and between the

orsal attention and frontoparietal networks. Decreases in within and

etween-network connectivity across the cortex with increasing age

ave been reported in a language task ( Zhang et al., 2021 ) and within

etworks supporting higher level cognitive functions during resting-

tate ( Geerligs et al., 2015 ). 

One possible explanation for reduced modulation in network func-

ional connectivity by working memory load in older adults is that they

ay already be close to ceiling in terms of neural resources at set size

ne. We found that older adults do still show positive load-modulated

onnectivity ( Fig. 5 ), but to a lesser extent than younger adults. At the

ame time, the difference in performance between a lower and higher set

ize is much larger in older adults than it is in young ( Fig. 2 b). This sug-

ests that younger adults increase functional connectivity moving from

et size 1 to 3 in response to increased task demands, resulting in only a

light decrease in performance. Older adults show less of an increase in

onnectivity strength with increasing demands and their performance

eclined more. In a previous study, older adults showed a large change

n functional connectivity moving from baseline to a simple task, while

onnectivity was comparable when moving from a simple task to a more
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emanding task; in contrast, younger adults showed the largest change

rom a simple to a more demanding task ( Geerligs et al., 2013 ). Accord-

ng to the CRUNCH model ( Reuter-Lorenz and Cappell, 2008 ), older

dults need to recruit more neural resources at lower levels of demand

ompared to younger adults. This has the consequence that they reach

he ceiling of their neural resources at a lower task load ( Dørum et al.,

017 ). Our results are compatible with CRUNCH, if older adults were

lready expending close to maximum resources at set size one of our

ask, they would not show much further increase with additional task

oad. 

The resting-state literature describes decreased segregation of func-

ional networks with increasing age, with weaker within-network con-

ectivity and greater connectivity between networks ( Chan et al.,

014 ; Geerligs et al., 2012 , 2015 ). Our result of weaker positive load-

odulated connectivity strength with increasing age within and be-

ween all networks except for the orbitofrontal-temporal pole net-

ork, show that findings from resting-state data do not easily translate

o task-modulated connectivity. This stresses the relevance of a task-

ased approach for understanding how age affects cognitive functioning

 Campbell and Schacter, 2016 ). The relevance of task-based approaches

as also been stressed (e.g., by Rosenberg and Finn, 2022 ) in response

o Marek et al. (2022) , who suggested larger sample sizes are needed to

elate resting state connectivity to behavioral performance. 

.3. Performance effects on load-modulated functional connectivity 

Effects of performance on neural measures are much smaller than

hose of age. When testing the relationship between performance and

onnectivity across the whole brain, controlling for age, the effects of

erformance did not survive correction for FWE. As we hypothesized

hat the effects of performance would be most pronounced in the net-

orks that showed the strongest effect of task load, we conducted an

xploratory analysis restricted to those networks. By basing our ex-

loratory analysis on whole-brain connectivity results, we made a data-

riven choice in our selection of networks to further examine in relation

o performance. Previous studies have often based their selection of ROIs

n activation results which has led to a strong focus on the frontopari-

tal network; however, in our connectivity results, the frontoparietal

etwork was only moderately modulated by task load. Results from our

xploratory analysis suggest that while both the visual and dorsal atten-

ional networks are highly sensitive to load, individuals with a lower

esponse error (i.e., better performance) are those who show a higher

oad-modulated functional connectivity strength only within the dorsal

ttention network (controlling for age). 

The dorsal attention network is primarily associated with visuospa-

ial attention. Various models of memory have indicated attention as

rucial for working memory ( Baddeley and Hitch, 1974 ; Cowan, 1988 ).

here is a large body of research which suggests that individual differ-

nces in working memory performance are determined for a large part

y variability in attentional control (for a review, see Erikson et al.,

015 ). As we did not modulate attention, we cannot determine whether

he involvement of the dorsal attention network means that attention is

he mechanism causing the differences in performance in our study. It

s interesting that load-modulated connectivity in the dorsal attention

etwork might be related to performance, given the mixed evidence on

ecoding the content of working memory from areas like the intrapari-

tal sulcus despite this region showing sustained load-sensitive delay-

eriod activity ( Emrich et al., 2013 ; D’Esposito and Postle, 2015 ). Pre-

ious studies have also associated task-related increases in functional

onnectivity with better performance (between the premotor cortex

nd the dorsolateral prefrontal cortex, Nagel et al., 2011 ; between the

upplementary motor areas, cingulate, precuneus and some frontal ar-

as, Steffener et al., 2012 ), though in some cases in an age-dependent

anner (within a frontoparietal network, Burianova et al., 2015 ; nega-

ive connectivity between the frontoparietal and default mode network,

ongpipat et al., 2021 ). These studies used a priori selection of ROIs
10 
r a network based on activation to study the effects of performance.

e used our connectivity results to select networks for our exploratory

nalysis as task-modulated connectivity not only involves task-active re-

ions but also regions that are not activated or deactivated by the task

 Di and Biswal, 2019 ). This might explain the difference in results. We

ound no significant interaction effect between age and performance on

oad-modulated connectivity. 

As the effect of performance was non-significant in our whole-brain

nalysis, the results from our exploratory analysis should be interpreted

ith care. Both our main analysis and supplementary analyses using

ifferent parcellations suggest opposite effects of performance on load-

odulated functional connectivity in the visual and dorsal attention net-

ork (see the unthresholded results in Figure S4.4). These exploratory

nalyses only hint at possible mechanisms. Future studies, preferably

n the form of a preregistered report, can use these results for a priori

election of networks to further study the relation between functional

onnectivity and performance. 

.4. Limitations and methodological remarks 

In this study we investigated the modulation of functional connec-

ivity by working memory load. There are many confounds when study-

ng age-related differences in functional connectivity, like head motion

 Geerligs et al., 2017 ), vascular health ( Tsvetanov et al., 2020 ), and mo-

or skill for task-based connectivity. By using a contrast for two differ-

nt task loads, we obtained a measure that showed the difference within

ach individual between two conditions. This within-individual measure

s less sensitive to between-individual confounds, and demonstrates that

he difference in connectivity from low to high load is smaller in older

dults. However, this does not give information on whether older adults

ave higher connectivity strength at low load compared to younger

dults, as CRUNCH would predict (discussed above; Reuter-Lorenz and

appell, 2008 ), and/or lower connectivity strength at high load. We

ould not test this here due to our lack of a zero-load condition or a

eparable resting baseline in the task. Thus, it is important to keep in

ind when interpreting these findings that an ROI or network pair that

oes not show a modulation by task load might still change in strength

f connectivity between rest and task. Furthermore, the modulation in

onnectivity strength reported here is only based on the contrast of set

ize 3 > set size 1. This does not exclude the possibility that the rela-

ionship with load is U-shaped or that findings depend on these specific

oads. 

A second limitation is that the patterns of connectivity during en-

oding and maintenance cannot fully be dissociated. The encoding pe-

iod always preceded maintenance, and as is typical for most working

emory paradigms, the delay-period had a fixed length without jitter

 Crowell et al., 2020 ). We included regressors for the events that we

ere not interested in for each specific contrast (e.g., regressors for

he encoding and response periods when examining the maintenance

hase), but this had no influence on the connectivity matrices (i.e., par-

ial correlations did not change). Thus, in the current design we cannot

xclude the possibility of some contamination from the encoding period

uring maintenance. A related issue typical for working memory task de-

igns, is the difference in duration of the encoding and maintenance pe-

iod. A longer period might have a better signal-to-noise ratio and there-

ore, result in stronger effects. However, analyzing the encoding and

aintenance phase together did not lead to stronger load-modulated

onnectivity, which suggests that the stronger load-modulated connec-

ivity during maintenance is not only an artifact of different timing

nd may reflect a true increase in load-modulated connectivity when

aintaining information in working memory. Supplementary analyses

howed that the stronger effect held up for all four 2 s windows of the

aintenance interval. A closer look at the effects of age and perfor-

ance on connectivity patterns suggests that there are slightly different

atterns of connectivity during encoding and maintenance. Specifically,

tronger effects of age between the frontoparietal and the visual and de-
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ault mode network were observed during encoding. This suggests that

he design is to some extent able to detect differences between the two

ask periods, and that the highly similar patterns are not just due to

pill-over effects. 

Third, the advantage of a whole-brain approach is that we were able

o demonstrate how widespread the effect of age is on load-modulated

unctional connectivity. However, it does come at the cost of multiple

omparisons. Whereas effects of age were clearly detectable, the effects

f cognition on neural signals are often weaker (see for a review on

rain-wide association studies Marek et al., 2022 ), made worse here by

he need to control for age. Therefore, we focused on the effect of per-

ormance only in the network cells that showed the strongest effect of

ask load. This exploratory analysis suggests that an increase in connec-

ivity strength within the dorsal attention network might be related to

etter performance, while controlling for age. Our whole brain results

hat did not survive correction for FWE pointed in the same direction. 

Nevertheless, our study had several strengths which include a large,

dult lifespan sample, a highly sensitive measure for working mem-

ry with a continuous response, a separate encoding and maintenance

hase, the same amount of visual input per trial across loads, a whole-

rain approach, a within-subject connectivity measure based on the con-

rast of high versus low working memory load, and replication of our

ain findings using different parcellation schemes. Future studies need

o validate our findings using interventional and longitudinal studies. 

. Conclusion 

The current study confirms that functional connectivity strengthens

n response to increasing working memory load. This was especially true

n the dorsal attention and visual networks during encoding and mainte-

ance. The similarity between patterns of connectivity during encoding

nd maintenance and the strong load modulation in the visual network

rovide additional support for the sensory recruitment model of work-

ng memory. A novel finding was that VSTM load-modulated functional

onnectivity decreased with age across most of the cortex both within

nd between networks, possibly because older adults are already close to

eiling in terms of neural resources at the lowest load. Our exploratory

nalyses give suggestions for future research to further investigate the

elation between working memory performance and functional connec-

ivity in the visual and dorsal attention networks. 
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