
Supplementary results 

 

Drivers of the age-related decrease in inter-subject synchrony  

When interpreting the effect of age on inter-subject synchrony, it is important to consider potential 
confounding factors. It is known that aging affects the variability of the spontaneous signal 
(Tsvetanov et al., 2015) and that aging can impact the amount of non-neural noise in the data 
(Geerligs et al., 2017). We have taken care throughout the paper to account for differences in noise 
levels through elaborate corrections of head motion effects and by including multiple covariates of 
no-interest related to head motion and ICA denoising. However, to understand the causes underlying 
the loss of synchronization better, we investigate a number of other metrics in this section.  

Let us assume that the BOLD time-series of a given brain region consists of three components, some 
spontaneous (background) neural signal, an evoked response to certain events in the movie and a 
noise component. For the sake of simplicity, we assume that those signals are additive. Computing 
the correlation between two time-series inherently involves z-scoring the data. Therefore, any 
differences in the total variability of the signal does not affect the correlation, but the relative 
contribution of the different data components (event-related, spontaneous and noise) could have an 
effect on the correlation estimate. Computing the synchrony for a given participant involves 
computing a correlation between the timecourse of that participant and an average timecourse over 
all other participants. The average time-course should only be driven by evoked responses that are 
shared across participants because the noise and spontaneous signal should not be correlated across 
participants. However, the timecourse of each participant could be shaped to different degrees by 
the three components (event-related, spontaneous signal and noise). With this in mind, the observed 
age-related decreases in synchrony (correlation with the group) could potentially be explained by 
four factors that shape the individual’s timecourse:  

1. Increased idiosyncrasy with advancing age; this could be due to more variability in in 
the events that drive an evoked response with advancing age or more variability in 
the nature of that response. 

2. An age-related decrease in the amplitude of evoked responses to events in the movie 
3. An age-related increase in noise in the data 
4. An age-related increase in spontaneous signal fluctuations in the data 

To disentangle these different options, we can evaluate how each of these changes would impact 
other measures. One measure of interest is the fluctuation amplitude of the signal in a given brain 
region (its average variability over time). If the three components (event-related, spontaneous signal 
and noise) are indeed additive, the fluctuation amplitude would not change with age if option 1 is 
true, it would show an age-related decrease if option 2 is true, and it should show an age-related 
increase for options 3 and 4.  

We found that only 10 out of 748 ROIs showed a significant negative association between fluctuation 
amplitude and age (see Fig S1D), suggesting that in most brain regions, age-differences in fluctuation 
amplitude are not responsible for the observed differences in synchrony. To establish this further, we 
also repeated the analyses of the correlation-based synchrony measures (as reported in the main 
text), using the fluctuation amplitude of each region during movie watching as a covariate of no 
interest. The results were highly similar to the original results (compare Fig S1A and Fig S1C), 
suggesting that the age-effects on synchrony cannot be fully explained by the presence of additional 
noise, additional spontaneous fluctuations or by a lower amplitude of the evoked responses. 



Another way to test whether age differences in synchrony are due to an increase in noise is to use a 
regression-based measure, instead of a correlation-based measure. This measure is obtained by 
predicting each participant’s ROI timecourse with the average timecourse of all other participants, 
along with an intercept term. The beta coefficient thus reflects the scaling of the averaged signal that 
is required to best fit the data for the remaining participants. The estimate of this scaling parameter 
therefore should not be affected by the presence of additional noise or spontaneous fluctuations 
(options 3 and 4). It would however show a decline for options 1 and 2. 

We found that with the regression-based synchrony measure, the loss of synchronization with 
advancing age was very similar to the results in the main text (compare Fig S1A and S1B). This 
suggests that the presence of additional noise or additional spontaneous fluctuations are not likely to 
be the main drivers of this age-effect.  

Unfortunately, it is not possible to look at the evoked responses in a more direct way, because we do 
not know the events that trigger a response in each brain regions. However, if our assumption of 
additive signals is correct, these findings demonstrate that at least a part of the age-related 
differences must be due to an increase in idiosyncrasy of neural responses with advancing age.  

 

 

Figure S1: A. the correlation between age and synchrony, when using the correlation based synchrony 
measure – also shown in the main paper. B. the correlation between age and synchrony, when using 
the regression based synchrony measure. C. the correlation between age and synchrony, when using 
the correlation based synchrony measure, where fluctuation amplitude was used as an additional 
covariate of no interest. D. The correlation between synchrony and fluctuation amplitude of the BOLD 
signal. Results were Bonferroni corrected for multiple comparisons. Results in A-C were adjusted for 
covariates of no interest related to head motion and ME-ICA denoising. 



 

Cluster selection 

The regions of interest that demonstrated a significant age-related decline in synchrony are shown in 
Fig S2.  These regions are the same as those in Fig 1B, however, in this figure we have shown the 
functional network labels of each of these regions, based on (Geerligs et al., 2015b see Fig 5C for a 
the networks labels of all ROIs). Most of the regions showing significant age-related change were part 
of the fronto-parietal control network (FPCN; 32 ROIs fell within the FPCN), the default mode 
network (DMN; 25 ROIs fell within the DMN), and the brainstem-medial temporal lobe (MTL) 
network (22 ROIs; with the visual network being the next most affected network with 19 ROIs). We 
focused on these three networks in the paper, as they not only showed the strongest age-related 
declines (indicated by darker blue in Fig.  1B), but are also repeatedly implicated in the 
neurocognitive aging literature (Grady, 2012; Turner and Spreng, 2015). For the FPCN, we observed 
that the decline in synchrony spanned across most of the network, including the right and left 
inferior parietal and left middle frontal gyrus. For the DMN and the brainstem-MTL network, the age-
effects were more region-specific. For the DMN, most of the age-effects were located in the medial 
prefrontal cortex (mPFC), with only six ROIs in other parts of this network being affected by age. For 
the brainstem-MTL network, we observed that the effects were mainly restricted to the MTL, 
including the hippocampus, temporal pole and parahippocampal areas, with only two ROIs outside 
these areas (partially overlapping with the thalamus) being affected as well. Thus to promote 
interpretability, for these latter two networks, we focused on regional rather than network-level 
effects. While the FPCN is critical for cognitive control and working memory (Vincent et al., 2008), 
areas in the MTL are associated with memory encoding and retrieval (Squire et al., 2004) and the 
mPFC is associated with memory, imagination, and affective processing (Benoit et al., 2014; Van 
Kesteren et al., 2012; Winecoff et al., 2013).  For the MTL and mPFC, we computed average 
synchrony scores for ROIs that were significantly changing with age, and that were located in and 
around the MTL and in the mPFC, respectively. For the FPCN we computed a mean synchrony score 
by averaging the synchrony scores across all the ROIs in that network that were significantly changing 
with age. 

 

 

Figure S2: The functional network label of each of the ROIs showing significant age-related change is 
shown. 

 

Clustering and age-related shifts in neural responses 

In the main text, we investigate if there are subgroups of participants (or older adults) who 
consistently respond to the movie in a different way, which caused the observed decline in 



synchronization. This was done using a community detection algorithm. Here, we show in figure S3 
that the results of the community detection algorithm were the same for all three regions and across 
a range of settings for the number of communities. In each case, no evidence was observed for 
modular communities, suggesting that there are not subgroups of participants (of any age) that are 
consistently responding to the movie in a different way 

 

Figure S3: Community structure for k=2-8, for the FPCN, mPFC and the MTL. Communities are ordered 
from the highest to the lowest inter-subject synchrony. 

 

We also performed another analysis that supports these findings. Here we looked at whether there 
was a systematic change in the neural responses to the movie with age. If so, we would expect older 
adults to be more similar to their age-matched peers than to younger adults. Therefore, we looked at 
the synchrony between participants of a similar age (comparing each participant’s time-course to the 
mean timecourse of 20 age-matched participants). With this approach, age-effects in the FPCN, 
mPFC and MTL were even more pronounced than with the original synchrony measure (FPCN, r=-
0.44, p<0.001; mPFC, r=-0.48, p<0.001; MTL, r=-0.53, p<0.001), suggesting that there were no 
systematic changes with age in the neural responses. This in line with the results of the community 
detection algorithm.  

 

Time-dependent changes in synchrony – effect of window width 

In the main text, we describe how average synchrony, as well as the association between age and 
synchrony, varies over time. We also describe how these changes were associated with specific 
events in the movie. Here, we repeat this analysis for different window widths of the sliding window. 
Fig. S3 shows good correspondence between the results at different window widths. As expected, 
time-courses do get smoother as the width of the sliding window increases. These results 
demonstrate that the results we describe in the main text are not specific to the width of the sliding 
window we used.  

 

 



  

Figure S4: Changes over time in inter-subject synchrony for the mean across the group and the effect 
of age on inter-subject synchrony, for two different sizes of the sliding window. On the left, the mean 
in represented by the line and the standard error around the mean in shown by the shaded regions 
around the lines. On the right, time-points where the age-effects were significantly stronger or 
weaker than average are shown in light (stronger than average) or dark (weaker than average) 
patches (after Bonferroni correction).  

 

Age-related changes in functional connectivity 

In Fig. 5B, we showed how aging affected functional connectivity estimates. Here we describe those 
results in more detail. In line with previous studies, we observed that with age, there was a decrease 
in within-network connectivity and an increase in connectivity between distinct functional networks 
(Chan et al., 2014; Geerligs et al., 2015a, 2014) (Fig.  5B). In particular, we observed reduced 
connectivity within the FPCN, DMN and the dorsal attention network (DAN), as well as within the 
anterior insula and the auditory network. Increased connectivity with advancing age was observed 
for many of the ROI pairs in higher order networks that showed no correlations or negative 
correlations in the average connectivity matrix. These were connections between the inferior 
temporal and DAN, between the inferior temporal and FPCN, between the DMN and DAN, as well as 
between the FPCN and the DMN.  

 

References 

Benoit, R.G., Szpunar, K.K., Schacter, D.L., 2014. Ventromedial prefrontal cortex supports affective 
future simulation by integrating distributed knowledge. Proc. Natl. Acad. Sci. U. S. A. 111, 
16550–16555. https://doi.org/10.1073/pnas.1419274111 



Chan, M.Y., Park, D.C., Savalia, N.K., Petersen, S.E., Wig, G.S., 2014. Decreased segregation of brain 
systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. 111, E4997-5006. 
https://doi.org/10.1073/pnas.1415122111 

Geerligs, L., Maurits, N.M., Renken, R.J., Lorist, M.M., 2014. Reduced Specificity of Functional 
Connectivity in the Aging Brain During Task Performance. Hum. Brain Mapp. 35, 319–330. 
https://doi.org/10.1002/hbm.22175 

Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M., 2015a. A Brain-Wide Study of Age-
Related Changes in Functional Connectivity. Cereb. Cortex Cortex 25, 1987–1999. 
https://doi.org/10.1093/cercor/bhu012 

Geerligs, L., Rubinov, M., Cam-CAN, Henson, R.N., 2015b. State and Trait Components of Functional 
Connectivity: Individual Differences Vary with Mental State. J. Neurosci. 35, 13949–13961. 
https://doi.org/10.1523/JNEUROSCI.1324-15.2015 

Geerligs, L., Tsvetanov, K.A., Cam-CAN, Henson, R.N., 2017. Challenges in measuring individual 
differences in functional connectivity using fMRI: The case of healthy aging. Hum. Brain Mapp. 
38, 4125–4156. https://doi.org/10.1002/hbm.23653 

Grady, C., 2012. The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13, 491–505. 
https://doi.org/10.1038/nrn3256 

Squire, L.R., Stark, C.E.L., Clark, R.E., 2004. the Medial Temporal Lobe. Annu. Rev. Neurosci. 27, 279–
306. https://doi.org/10.1146/annurev.neuro.27.070203.144130 

Tsvetanov, K.A., Henson, R.N.A., Tyler, L.K., Davis, S.W., Shafto, M.A., Taylor, J.R., Williams, N., Rowe, 
J.B., 2015. The effect of ageing on fMRI: Correction for the confounding effects of vascular 
reactivity evaluated by joint fMRI and MEG in 335 adults. Hum. Brain Mapp. 36, 2248–2269. 
https://doi.org/10.1002/hbm.22768 

Turner, G.R., Spreng, R.N., 2015. Prefrontal Engagement and Reduced Default Network Suppression 
Co-occur and Are Dynamically Coupled in Older Adults: The Default–Executive Coupling 
Hypothesis of Aging. J. Cogn. Neurosci. 27, 2462–2476. https://doi.org/10.1162/jocn 

Van Kesteren, M.T.R., Ruiter, D.J., Fernández, G., Henson, R.N., 2012. How schema and novelty 
augment memory formation. Trends Neurosci. 35, 211–219. 
https://doi.org/10.1016/j.tins.2012.02.001 

Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L., 2008. Evidence for a Frontoparietal 
Control System Revealed by Intrinsic Functional Connectivity. J. Neurophysiol. 100, 3328–3342. 
https://doi.org/10.1152/jn.90355.2008 

Winecoff, A., Clithero, J.A., Carter, R.M., Bergman, S.R., Wang, L., Huettel, S.A., 2013. Ventromedial 
Prefrontal Cortex Encodes Emotional Value. J. Neurosci. 33, 11032–11039. 
https://doi.org/10.1523/JNEUROSCI.4317-12.2013 

 

 


